Robust Image Completion via Deep Feature Transformations
نویسندگان
چکیده
منابع مشابه
Image alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملDeep Feature Consistent Deep Image Transformations: Downscaling, Decolorization and HDR Tone Mapping
Building on crucial insights into the determining factors of the visual integrity of an image and the property of deep convolutional neural network (CNN), we have developed the Deep Feature Consistent Deep Image Transformation (DFC-DIT) framework which unifies challenging one-to-many mapping image processing problems such as image downscaling, decolorization (colour to grayscale conversion) and...
متن کاملShift-Net: Image Inpainting via Deep Feature Rearrangement
Deep convolutional networks (CNNs) have exhibited their potential in image inpainting for producing plausible results. However, in most existing methods, e.g., context encoder, the missing parts are predicted by propagating the surrounding convolutional features through a fully connected layer, which intends to produce semantically plausible but blurry result. In this paper, we introduce a spec...
متن کامل5D reconstruction via robust tensor completion
Tensor completion techniques (including tensor denoising) can be used to solve the ubiquitous multidimensional data reconstruction problem. We present a robust tensor reconstruction method that can tolerate the presence of erratic noise. The method is derived by minimizing a robust cost function with the addition of low rank constraints. Our presentation is based on the Parallel Matrix Factoriz...
متن کاملGabor Feature Stabilities for Basic Image Transformations
This paper describes the feature stabilities for four basic image transformations, while examining an image feature extraction method using 2D Gabor filters, as an exmple. The basic transformations are intensity change, scaling, translation, and rotation. Based on the consideration about intensity change and scaling, feature normalization methods were proposed. Moreover, optimal sampling resolu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2935130